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Barotropic instability of the Bickley jet 
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The linear stability of the zonal shear flow = -sech2 y is investigated in the 
framework of the beta-plane approximation. This retrograde jet is known to be more 
unstable than its eastward-propagating counterpart and has some surprising 
characteristics. First, this is a rare example of a flow in which barotropically unstable 
modes occur that do not have a critical point. Secondly, singular neutral modes exist 
in which the critical point occurs at  the centre of the jet, where = 0. It is shown 
in this paper that such singular modes form part of the stability boundary both for 
the varicose mode and also for the radiating sinuous mode. 

1. Introduction 
The observed instability of zonal currents in planetary atmospheres has motivated 

numerous studies of the barotropic stability of such flows. Most of this work has been 
based on the linear theory and its relevance to the Earth’s atmosphere at tropical 
latitudes is discussed, for example, in the survey article by Kuo (1973). The theory 
is relevant to the ocean, as well, and Philander (1976) attributes turbulence in the 
equatorial surface currents of the Atlantic and Pacific oceans to barotropic 
instability. More recently, Hurlburt & Thompson (1980) have concluded on the basis 
of numerical simulations that certain eddy shedding phenomena in the Gulf of 
Mexico are due to barotropic instability of the jet-like Loop Current. 

The basic equation describing the evolution of the flow is the vorticity equation, 
which can be written 

where the vorticity w = -Ve$, Re is the Reynolds number and the velocity 
components are related to the stream function by ( u , v )  = ($ry, -$,). In the beta- 
plane approximation, the Coriolis effect is modelled by a linearization about some 
mean latitude and /3 is the derivative of the Coriolis parameter (assumed constant). 

When p=O,  the unstable and neutral modes in the linear stability problem 
associated with (1.1) decay exponentially as ly( -+ 00. However, with /l > 0, even in 
the absence of a mean flow, westward-propagating Rossby waves exist. If a mean 
flow is present whose velocity overlaps the phase speed of Rossby waves at a value 
of /l where linear instability is possible, then the eigenfunctions may be oscillatory 
instead of exponentially decaying. These are the so-called radiating modes which 
must satisfy the condition of outward energy propagation, instead of exponential 
decay, at infinity. McIntyre & Weissman (1978) point out the significance of the 
phase speed condition and discuss other pertinent aspects of radiating instabilities. 

Talley (1983) has argued that such radiating modes are needed to explain the 
large-scale eddy energy distribution outside zonal currents in mid-latitude oceans. 
Although the amplification rates are smaller for these modes, they have large 
meridional decay scales in agreement with observation. She has applied the linear 

O ~ + $ ~ W , - ~ , W ~ - / ~ $ ,  = Re-V2w,  (1.1) 
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theory to broken-line profiles modelling jets and mixing layers and finds the results 
to be qualitatively consistent with data for the western North Atlantic. Similar 
considerations have motivated a number of meteorological studies, such as the 
article by Dickinson & Clare (1973), who investigated both exponentially decaying 
and radiating unstable perturbations to a tanh y shear layer. 

We consider small-amplitude disturbances to a mean parallel shear flow a(y) and 
employA(l.l) as the starting point. For perturbations whose stream function is of the 
form II. = $(y) exp {ia(x-ct)}, the linear, inviscid theory revolves around the 
Rayleigh-Kuo equation 

(a-C)(f-a2q5)+(p-a")$ = 0, (1.2) 
where a is the wavenumber and c is a complex constant whose real part is the phase 
speed. As noted by Howard & Drazin (1964), although /3 is always positive, changing 
its sign is mathematically equivalent to reversing the flow direction ; hence, it is to 
be understood that the results presented below for p < 0 and a = sech2 y correspond, 
in reality, to the retrograde jet a = -sech2 y with /3 > 0. 

Two neutral modes for the Bickley jet were found by Lipps (1962), namely the 
sinuous mode 

c = ia2, p = ia2(4-a2), q5 = sech2 y (1.3) 

c = i (3+a2) ,  p = Q(1-a2) (3+a2),  q5 = sechytanhy. (1.4) 

c = l ,  p = - ' 2  @a (9-a2), $ = (sechy)uz/s (tanh y)2-u2/3. (1.5) 

and the varicose mode 

Howard & Drazin found, in addition, the singular neutral mode 

The interpretation of this mode is not clear owing to the branch point at  y = 0 and 
it will be discussed further in 5 3. In figure 1, the three neutral curves (1.3)-( 1.5) are 
displayed. 

From a generalization of Rayleigh's inflexion point theorem, it follows that the 
quantity (p-u"') must change sign somewhere for instability to occur; stability is 
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therefore guaranteed for p < -2. However, because ,8 > -2 is not a sufficient 
condition for instability, it cannot be concluded that p = -2 forms part of the 
stability boundary. Lipps, on the other hand, used Lin’s perturbation formula to 
show that for /3 > -2 the neutral modes (1.3) and (1.4) do constitute stability 
boundaries. The missing portion from p = -2, u2 = 6 (or a2 = 3 in the case of the 
varicose mode) must be computed numerically. In  much of this paper, the term 
‘neutral curve’ refers to this part and it will be shown in $2 that the presence of 
radiating modes results in the stability boundary for the sinuous mode being quite 
complicated. It consists of three distinct portions and contains a cusp where the 
neutral curves for the radiating and exponentially decaying modes intersect. 

For a given positive value of 8, the maximum amplification factor uc, is obtained 
by considering the sinuous mode and therefore most numerical computations have 
been done for that mode. However, there are two reasons why the varicose mode 
would appear to merit further attention. First, it could play a significant role in the 
nonlinear problem, possibly in the context of modal interactions. Leib & Goldstein 
(1989), for example, have studied the resonant interaction between sinuous and 
varicose modes in the p = 0 case. Secondly, it was found by Howard & Drazin that 
for long waves the varicose mode had larger growth rates. Although this is clearly the 
case for /3 > 0, our results presented in $3 do not support their conclusion for negative 
values of 8. Interestingly, though, it is found that the singular solution (1.5) 
comprises the lower stability boundary for the varicose mode. We return to this topic 
in $3, but will first elucidate the stability properties of the sinuous mode in the 
following section as it appears to be the most important in practice. 

2. Stability characteristics of the sinuous mode 
In his survey article treating the general topic of barotropic instability, Kuo (1973) 

has presented numerical calculations for the unstable sinuous mode. These 
calculations are accurate for moderately unstable waves, but are in error for weakly 
amplified waves when /3 is negative. Kuo also concluded that the singular mode (1.5) 
forms part of the stability boundary for 8 < - 1 ,  but it will be seen below that such is 
not the case. 

Subsequently, inamorethoroughnumericalinvestigation, Deblonde ( 1981) computed 
a portion of the missing stability boundary, namely, that part which begins at (8, u2) = 
(-2,6).  This computation is made difficult by the fact that c is not far from unity 
along this curve so it was not clear a priori if the neutral modes were singular. 
Moreover, the presence of a continuous spectrum of modified Rossby waves to the 
left of the stability boundary makes it necessary to identify some property that 
distinguishes those neutral modes comprising the stability boundary from the 
ordinary modified Rossby waves. 

It is, in fact, the non-analytic behaviour of the dispersion relation along the 
neutral curve that can be used to locate it precisely. Essentially, two modified 
Rossby waves coalesce, as /? is increased, to become a single unstable mode once the 
stability boundary is crossed. A procedure exploiting this observation is to compute 
c as a function of B at constant u (or as a function of a with constant) for the lowest 
Rossby mode and, if this curve has a minimum, it corresponds to a point on the 
stability boundary. The rationale behind this procedure is outlined in Drazin, 
Beaumont & Coaker (1982) and is essentially that one is looking for a point on the 
neutral curve co, say, where the coefficient of (c-co) vanishes in the Taylor series 
expansion of the dispersion relation. At such a point, the dispersion relation will yield 
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F’IGURE 2. Curves of constant amplification rate for the sinuous instability mode. 

an equation for ( C - C ~ ) ~  and instability results if ( C - C ~ ) ~  is equal to a negative 
quantity. The foregoing procedure was used to compute the portion of the neutral 
curve in figure 2 which begins a t  (/3, a) = ( - 2 , 4 6 )  and ends at about (p, a) = 

A cusp is formed where this curve intersects a second neutral curve, found by the 
( -  1.06, 1.1). 

author, which is given analytically by 

c = l a 2  6( +4), /3=-+a2(a2+4), q5 = 3tanh2y-1. (2.1) 
The method used to find (2.1), which also yields (1.3) and (1.4), was to transform (1.2) 
to the associated Legendre equation and then follow the procedure described in 
Mathews & Walker (1970, pp. 21-22). 

The solution (2.1) for - 2 < /3 < 1.06 comprises the upper stability boundary in figure 
2 for the unstable radiating modes as the vertical wavenumber vanishes (note that q5 is 
neither oscillatory nor exponentially decaying as JyI --f 00, but that q5’ vanishes). 
Interestingly, Talley (1983) also found neutral curves with a cusp and she speculated 
that this was due to the discontinuities in the velocity profiles she employed. Now, 
it is clear that it is rather the presence of both radiating and exponentially decaying 
modes of instability that is responsible. A similar phenomenon occurs in the marginal 
stability curve for the compressible tanh y shear layer investigated by Blumen, 
Drazin & Billings (1975) where, again, more than one mode of instability is present. 

Turning now to the numerical results for ci > 0, a rather surprising result found by 
Deblonde was that weakly amplified modes that do not have critical layers asci 4 0 occur 
in the region toward the upper left of the stability diagram in figure 2. (See, also, the 
modified Rossby wave results in figure 3 of Drazin et al. which are completely 
consistent with Deblonde’s computations.) Although the existence of such modes is 
permitted by a modified version of the semicircle theorem due to Pedlosky (1964), no 
other examples where this occurs are known to the author.? In fact, Tung (1981) has 
proved a theorem which would prohibit these modes because it states that neutral 
modes adjacent to unstable waves without critical points must propagate with a 

t A second example I have just come across is the sinusoidal jet studied by Yamasaki & Wada 
(1972). 
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speed c lying within the range of ~ ( y ) .  However, Tung's proof assumes that the 
dispersion relation is analytic on the stability boundary, but that is not the case on 
this portion of the neutral curve owing to the coalescence of modified Rossby waves. 
Collings & Grimshaw (1984) discuss this phenomenon in the context of barotropic 
shelf waves, where the governing equation is a generalization of (1.2). 

The curves of constant ac ,  were found by both Kuo and Deblonde to be smooth for 
ac, 2 0.10. However, Deblonde found that a sort of kink reversal begins to form in 
the curve for ac ,  = 0.08. It was later realized that this was due to the overlap of the 
radiating and 'trapped' modes. For smaller values of aci the curves of constant 
ac, characteristically reverse direction, as illustrated in figure 2 by the curve for 
ac, = 0.04. 

Given that certain results obtained by Deblonde were unexpected and that there 
was some disagreement with those of Kuo, a few words about her numerical 
procedures (and those we have used to extend her results) are appropriate. Both 
finite-difference and initial-value (shooting) methods were employed, as well as 
coordinate transformations to make the integration domain finite. When c, was 
small, the contour of integration was deformed into the complex plane in accordance 
with the analysis of Foote & Lin (1950) so that it was usually not necessary to pass 
near a singularity. (However, there are regions in parameter space where the two 
critical points approach each other and a very small step size must then be utilized.) 
It was verified that programs employing different methods gave the same results and 
agreement with the long-wave, small-/3 expansions of Howard & Drazin was very 
good in the domain where the latter are valid. 

2.1. Singular radiating modes 
It remains to discuss the portion of the stability boundary that descends from the 
point (/3, a) = (-2, 2/2) which consists of singular radiating modes with c = 1. First, 
we observe that Reynolds stress considerations require that these modes be singular. 
The Reynolds stress 7 for a neutral mode is constant in y and, if # ( y )  is even and 
oscillatory as I yI +- 00, then the value of 7 will be a different non-zero constant above 
the jet than below. There seems no obvious reason to rule out the possibility of 
c < 1, in which case, there would be jumps in 7 across two critical points with 7 = 0 
between them. However, a careful numerical study of the unstable radiating modes 
as c i$O left no doubt that c = 1 on the stability boundary. Hence, the Reynolds 
stress distribution is as illustrated in figure 3. 

When c = 1, u", = 0 and the Frobenius solutions valid for small y have the same 
form as in a stratified shear flow with Richardson number less than f, namely 

a2+@--Qy2+ . . .  4(1 - A )  

where h = (P+f) ' .  The Reynolds stress is given by 

7 = +(9'9*),, (2.3) 

7 = Aa(AB*),. (2.4) 

where i denotes the imaginary part, and for y > 0 we obtain 

This result is equivalent to equation (5.11) of Miles (1961) for the stratified case. 
However, the conclusion we will draw from (2.4) is the opposite. According to 
theorem VI I I  of Miles (1961), either A or B must be zero for a singular neutral mode 
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FIQURE 3. Variation of the Reynolds stress for a sinuous, radiating neutral mode. 

because the Reynolds stress vanishes at the boundaries in the cases he considered. 
Here, by contrast, both A and B must be non-zero in order to permit the jump in 7 

across the critical point indicated in figure 3. 
Far away from the jet, a" and ti vanish, so that, as y + f GO, 

#* - Ceriku, where k =  ( f  ---a2 7 .  
The signs in the exponential have been determined by imposing the radiation 
condition that the group velocity aw/ak be outward as Iyl+ 00, where w = a. In  the 
case of the Bickley jet, 

The corresponding analysis for radiating modes in a tanhy shear layer was 
formulated by Hickernell (1984). That problem differs from the present one in that 
the solutions are radiating on only one side of the shear layer. Consequently, a critical 
layer is required across which 7 jumps from zero on the side where $ has exponential 
decay to a non-zero constant on the radiating side. 

Returning now to the Bickley jet, we note that (2.3)-(2.5) can be used to obtain 
a relationship between the constants A ,  B and C (one of which is arbitrary). 
Specifically, owing to the symmetry of $, it is true that on either side of the jet 

h{AB*}, = +kICl2. (2.7) 

This relationship was employed as a check in our numerical procedure for computing 
eigenfunctions for neutral, radiating modes, which was the following. 

The integration was initiated at y = 0.05 using the Frobenius expansion (2.2) to 
obtain initial values for $ and #'. Then, (1.2) was integrated out to y = 3 using a 
fourth-order Runge-Kutta method. Two solutions denoted #A(A = 1, B = 0) and 
$B(A = 0, B = 1) were obtained in this way and then superimposed so as to satisfy 
the radiation condition at  y = 3, namely 

#'+ikr,A = 0. (2.8) 

The arbitrary constant was chosen to be A = 1, B was calculated by imposing (2.8) 
and the value of C determined from the result was then substituted into (2.7) to 
verify the procedure. Neutral values of a and /3 were obtained by extrapolating 
results for unstable modes with very small growth rates (on the order of ac, = 
A typical eigenfunction is illustrated in figure 4. 
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FIGURE 4. Eigenfunction for a neutral radiating mode; c = 1, a = 0.3 and /3 = - 1.94. 

3. The varicose mode and the singular non-radiating mode 
The varicose mode has received little attention in the literature because it has 

lower amplification rates when P = O  and it is unstable for a smaller range of 
wavenumbers when B + 0. However, it is clear from figure 1 that for /3 > 0 the 
varicose mode is more unstable when a is small and according to the long-wave 
analysis of Howard & Drazin it has some unusual properties when /3 is negative. In 
particular, in the limit a + 0 with P/a2 fixed, there is a neutral curve B = - a2. On 
either side of this neutral curve, instability is predicted and, for -B > a2, Howard 
& Drazin find 

c N 1 +e*i"/3{in4 - 1 -P/a2);>; (3.1) 

so that there can be instability with c, > 1. 
The possibility of instability on either side of a neutral curve, which occurs in 

Charney's model of baroclinic instability, is also suggested by the equivalence 
pointed out by Lindzen, Rosenthal & Farrell (1983) between the barotropic 
instability of a point jet and the baroclinic problem posed by Charney. Our results, 
however, illustrated in figure 5, failed to yield the instabilities predicted by (3.1). 
Although modes with c > 1 were obtained in the region -B  > a2, they had ci = 0 
and, hence, are modified Rossby waves rather than barotropic instabilities. The 
numerical computations of Kwon & Mak (1988) for a bounded Bickley jet also failed 
to produce instabilities in the region in question. They attributed this to crude 
numerical resolution, but our calculations with much greater resolution yield the 
same result. It must be concluded then that the + sign in (3.1) corresponds to taking 
an inadmissible root when inverting the long-wave expansion to solve for c .  This 
result was disappointing because (3.1) seemed to offer an explanatioh for some recent 
experimental observations of Sommeria, Meyers & Swinney (1991) which indicated 
that for a retrograde jet the varicose mode was the most unstable. 

These results illustrate the limitations of broken-line profiles because the top-hat 
jet is unstable for all negative values of /3 in the region a = B/a2 < - 1. This occurs 
because of the infinite vorticity at the velocity discontinuities, which cannot be 
counteracted by the stabilizing beta effect as it is in the case of the Bickley jet where 
the flow is stable for /? < -2. For long waves, the dispersion relation of the top-hat 
jet yields the unstable solution 

c - 1+al2-t(-1+i)(-i1-)f+ ... (3.2) 
which agrees with (3.1) in predicting instability, but now with c, < 1. (The 
corresponding small-a result in Howard & Drazin is in error, but their general 
dispersion relation (5.3) and expansions for a > - 1 and a = 1 are correct.) 
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FIGURE 5. Curves of constant amplification rate for the varicose instability mode. 

The numerical solutions in figure 5 did reveal an interesting and surprising result 
relative to the singular mode (1.5). It can be seen that this solution yields the lower 
stability boundary for the varicose mode, whereas Howard & Drazin (1964) 
concluded that (1.5) was a sinuous mode that did not form part of a stability 
boundary. Not only does the curve for aci = 0.01 follow closely the neutral solution 
(1.5) for p(a) ,  but c, is very close to unity [e.g. a t  (p, a )  = ( -  1.30, 1.275), c, = 0.9871, 
so there is no doubt that (1.5) is part of the stability boundary. 

Because the singularity in (1.5) is of the same form as that encountered in stratified 
shear flows and q5 -to as IyI + 00, the theorem due to Miles cited below (2.4) applies 
here, i.e. q5 must be proportional to one or the other of the Frobenius solutions. For 
a2 c a it is proportional to 

The continuation of q5 across the branch point a t  y = 0, however, cannot be deduced 
from previous studies of stratified shear flows because @; = 0 in the present case. A 
critical-layer analysis of the Orr-Sommerfeld equation as Re + 00 is one possibility 
and this is being pursued by the author in collaboration with Professor S. N. Brown. 
Because = 0 now, the critical-layer thickness is ( d i e ) - :  instead of the usual 
( f i e ) - ) .  Introducing the inner variables 

whereas for a2 > t it is proportional to g B .  

7 = ( f i 4 f Y  and X(T) = q5(Y), 
the governing equation in the critical layer is now found to be 

xiv+iy2x”-i(p+2)x = 0. (3.3) 
Preliminary indications are that solutions of (3.3) are compatible only with an 

outer solution dominated by in which case we must have a2 < t (the regular 
solution at (/3, a2) = (-2,6) is an exception). This conclusion seems to agree with the 
inviscid approach in $4 of Drazin et al. (1982) based on an analysis of modified 
Rossby wave solutions of (1.2) in the limit c 4 1. 

Some as yet unpublished neutral solutions of the Om-Sommerfeld equation found 
numerically by Mr A. G.  Burns indicate that as Re + 00, c is greater than unity. 
Hence, the limit ci 4 0 and Re +- m of the Orr-Sommerfeld equation is non-uniform 
and the result for an inviscid singular neutral solution depends on the order in which 
the limits are taken. 
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4. Concluding remarks 
The stability boundary for the sinuous mode of instability in the case of a 

retrograde jet was shown in $2 to consist of radiating modes for relatively long 
waves, i.e. a2 < 2, and modes that decay exponentially as IyI + 00 for larger 
wavenumbers. For a given value of /3 the radiating modes have smaller amplification 
rates but they are, nonetheless, believed to be significant in describing phenomena 
where the meridional scales are large. A third portion of the neutral curve comprised 
of modes that are bounded at  infinity but whose eigenfunctions neither radiate nor 
decay exponentially was obtained in closed form (see (2.1)). The latter neutral curve 
forms a cusp where it intersects the stability boundary for the exponentially 
decaying modes. Such complex behaviour is likely to be typical of many shear flows 
when planetary rotation, density stratification or compressibility effects are taken 
into account. 

Although the present investigation was based entirely on the inviscid theory, a 
number of questions arose suggesting that a study of the corresponding Orr- 
Sommerfeld problem would be worthwhile. For example, singular modes with a 
critical point at the jet maximum occur for both the radiating and bound states. In 
addition, inviscid neutral solutions found previously by Lipps (1962) and Howard & 
Drazin (1964) exist for /3 < -2, where the flow is stable, and one wonders what the 
effect of viscosity would be on these modes as well as the various modified Rossby 
waves computed here and by Drazin et al. (1982). 

The radiating sinuous modes in figure 2 also are likely to be affected significantly 
by viscosity. For example, our numerical solutions of the Orr-Sommerfeld equation 
indicate the presence of a stability boundary at small values of a which is absent in 
the inviscid problem (where ci is greater than zero when a = 0). This neutral curve 
corresponds to a viscous mode, i.e. as Re + co, a + 0 such that ccRe is constant and the 
viscous terms in the Orr-Sommerfeld equation do not vanish. There is also some 
evidence of a neutral curve in the sinuous case related to the singular mode (1.5); 
clearly, the modal structure of the viscous problem is quite complex. 

A recent study of the inviscid initial-value problem for the parabolic jet a = #y2 
by Brunet & Warn (1990) again suggests that solutions with critical layers at  the jet 
maximum are significant. Their asymptotic solution as t + 00 indicates the formation 
of a nonlinear critical layer of thickness O(& when t - O(e-l) or longer, where 6 is an 
amplitude parameter. This singular behaviour is not found when the velocity profile 
is monotone so it is interesting and surprising to obtain such a result for a jet profile 
that without external forcing does not even admit modal solutions. 

Finally, we remark that a natural extension of the present analysis would be to 
treat weakly nonlinear disturbances now that the details of the stability boundary 
are known for the linear problem. A number of such studies have been carried out for 
the tanhy shear layer (see e.g. Churilov & Shukhman 1987) but none have been 
reported for the Bickley jet. Owing to the non-analytic behaviour along portions of 
the stability boundary, a variety of amplitude evolution equations would be 
obtained, so such a study could be quite interesting. 

The author is indebted to Professor Tom Warn for illuminating discussions 
concerning radiating modes and other aspects of this work. He is also grateful to Mr 
Claude Beauchamp for his competent assistance with the computational work 
reported herein. Finally, the research support through grants INF-7939 and OGP- 
8764 of the Natural Sciences and Engineering Research Council of Canada is 
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